A General Bayesian Markov Random Field Model for Probabilistic Image Segmentation

نویسندگان

  • Oscar Dalmau Cedeño
  • Mariano Rivera
چکیده

We propose a general Bayesian model for image segmentation with spatial coherence through a Markov Random Field prior. We also study variants of the model and their relationship. In this work we use the Matusita Distance, although our formulation admits other metric-divergences. Our main contributions in this work are the following. We propose a general MRF-based model for image segmentation. We study a model based on the Matusita Distance, whose solution is found directly in the discrete space with the advantage of working in a continuous space. We show experimentally that this model is competitive with other models of the state of the art. We propose a novel way to deal with nonlinearities (irrational) related with the Matusita Distance. Finally, we propose an optimization method that allows us to obtain a hard image segmentation almost in real time and also prove its convergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

Probabilistic image processing and Bayesian network

The basic frameworks and practical schemes of the Bayesian network and the belief propagation to the probabilistic image processing are reviewed. The probabilistic image processing is formulated by means of Bayesian statistics and Markov random fields. The system is regarded as one of Bayesian networks. In general, the Bayesian network has serious computational complexity because the probabilis...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009